

AFF NOTICE UTILISATEUR

1.	Introduction à l'AFF	4
2.	Installation et fonctionnement	5
2.1.	Description de l'AFF	5
2.2.	Raccordements électriques	7
2.2.1.	Bornier A	7
2.2.2.	Bornier B	9
2.2.3.	Bornier C	10
2.3.	Raccordements pneumatiques	1
2.4.	Écran tactile	14
2.4.1.	Page principale	15
2.4.1.1	Spécificités des modèles UNIT et UNIT+	16
2.4.2.	Page d'affichage des consignes de régulation et de mise en veille du LCD	17
2.4.3.	Pages de modification des paramètres avancés	18
2.4.3.1	. Pages de modification des paramètres avancés	18
2.4.3.2	Pages de modification des paramètres avancés	18
3.	Interface ModBus	19
3.1.	Configuration et câblage du bus de communication	19
3.2.	Configuration de la liaison série	20
3.3.	Accès aux registres	21
4.	Logiciel de configuration	24
4.1.	Description générale	24
4.2.	Onglet "Setiting/info"	25
4.2.1.	Programming interface com settings	25
4.2.2.	Système infos/settings	26
4.2.3.	PID régulation diagramme	28
4.3.	Configuration des capteurs	29
4.3.1.	Capteurs embarqués	29
4.3.2.	Capteurs externes	31
4.3.3.	Entrées contact sec	33
4.4.	Onglet "LCD Display"	34
4.5.	Onglet "Buzzer"	35
4.6.	Onglet "Analog outputs"	36
4.7.	Onglet "Relay outputs"	38
5.	Informations additionnelles	39
5.1.	Caractéristiques techniques	39
5.2.	Dimensions	40
6.	Informations complémentaires	41

Tableau 1	Fonctions principales des AFF	4
Tableau 2	Descriptions des signaux disponibles sur le bornier A	8
Tableau 3	Description des signaux disponibles sur le bornier B	9
Tableau 4	Description des signaux disponibles sur le bornier B	10
Tableau 5	Correspondance entre décalage en température et valeur de la sorte analogique 3	16
Tableau 6	Configuration ModBus de l'AFF	20
Tableau 7	ModBus Discrète Inputs Table	21
Tableau 8	ModBus Input Registers Table	23
Figure 1	Distributeur d'air en face avant	8
Figure 2	Prises de pression en face arrière	8
Figure 3	Prises de pression en face avant et en face arrière	9
Figure 4	Connexion à un banc d'étalonnage	9
Figure 5	LCD - Page principale	10
Figure 6	Page principale, modèle UNIT et UNIT+	12
Figure 7	Page d'affichage des consignes de régulation	13
Figure 8	Page de modification d'une valeur de consigne de régulation	13
Figure 9	Accès à la page de modification des paramètres avancés	14
Figure 10	Page de modification des paramètres avancés 1	15
Figure 11	Page de modification des paramètres avancés 2	16
Figure 12	Modification de la vitesse du ModBus	16
Figure 13	Interface de configuration AFF	20
Figure 14	Onglet "Settings/infos" de l'interface de confguraton AFF	21
Figure 15	Onglet "Settings/infos" : Programming interface com setngs	21
Figure 16	Onglet "Settings/infos" : choix du port COM	21
Figure 17	Onglet "Settings/infos" : choix de la vitesse du port COM	21
Figure 18	Onglet "Settings/infos" : choix de l'identifiant ModBus	22
Figure 19	Onglet "Settings/infos" : System infos/setting	22
Figure 20	Onglet "Settings/infos" : PID régulation diagram	23
Figure 21	Accès à l'édition des paramètres des capteurs	??
Figure 22	Accès à l'édition des paramètres des capteurs embarqués	24
Figure 23	Accès à l'édition des paramètres des capteurs externes	26
Figure 24	Accès à l'édition des paramètres des entrées contact sec	28
Figure 25	Onglet LCD Display	29
Figure 26	Onglet Buzzer	30
Figure 26	Onglet Buzzer	31

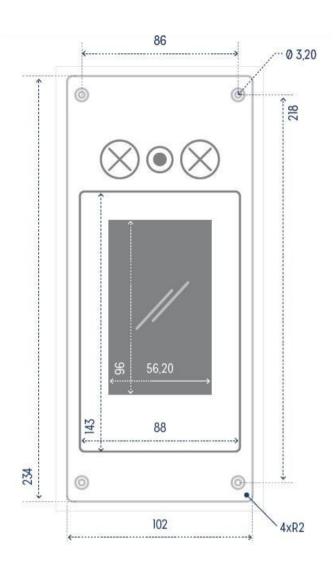
1. INTRODUCTION

L'AFF est destiné aux laboratoires, aux salle propres et aux blocs opératoires. Sa novelle façade design est disponible en aluminium anodisé ou en PVC rigide multicolore répondant aux dernières normes d'ultra-propreté.

Il est disponible en six déclinaisons :

- AFF-SENSOR
- AFF-SENSOR +
- AFF-PID
- AFF-PID +
- AFF-UNIT
- AFF-UNIT

Les fonctions principales des AFF sont résumées dans le tableau suivant :


	AFF- SENSOR	AFF- SENSOR+	AFF- PID	AFF- PID+	AFF- UNIT	AFF- UNIT+
Capteurs différentiel de pression embarqué - Gamme de fonctionnement : -125 Pa à +125 Pa	OUI	OUI	OUI	OUI	OUI	OUI
Capteur de température/hygrométrie embarqué - Gamme de fonctionnement température : -45°C à +130°C - Gamme de fonctionnement hygrométrie : 0 à 100%	-	OUI	-	OUI	-	OUI
Capteurs externes (entrée en tension)	3	3	3	3	3	3
Capteurs externes (entrée en courant)	3	3	3	3	3	3
Entrées contact sec	2	2	2	2	2	2
Affichages des mesures en temps réel sur l'écran	1 à 9	1 à 9	1 à 9	1 à 9	1 à 9	1 à 9
Sorties analogiques 0-10V isolées	3	3	3	3	2	2
Sortie analogique 0-10V isolée dédiée bloc opératoire	-	-	-	-	1	1
Sorties contact sec paramétrables	3	3	3	3	2	2
Sortie contact sec dédiée bloc opératoire	-	-	-	-	1	1
Alarmes visuelles paramétrables	OUI	OUI	OUI	OUI	OUI	OUI
Alarmes sonores paramétrables	OUI	OUI	OUI	OUI	OUI	OUI
Régulations multi-capteurs de type PID	-	-	0 à 3	0 à 3	0 à 2	0 à 2
Lisibilité à distance (jusqu'à 8m)	OUI	OUI	OUI	OUI	OUI	OUI
Interface de communication ModBus	OUI	OUI	OUI	OUI	OUI	OUI
Face avant étanche	OUI	OUI	OUI	OUI	OUI	OUI

[Tableau 1 Fonctions principales des AFF]

Mail: contact@ses-automation.fr

5.2 DIMENSIONS

INFORMATION COMPLÉMENTAIRES

Entretien

Évitez tous les solvants agressifs.

Lors de nettoyage à base de produits formolées (pièces ou conduit) protéger l'appareil et les sondes.

Modèles

AFF-SENSOR AFF-SENSOR+
AFF-PID AFF-UNIT AFF-UNIT+

Options

- Jonctions et raccords plastique
- Boîtier PVC saillie
- Passage de cloisons

Accessoires

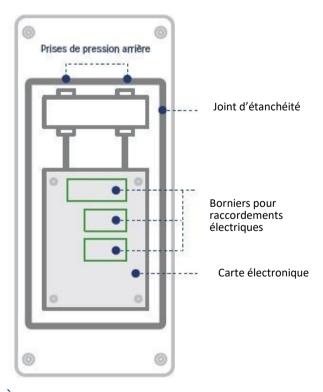
• Jeux de bouchons

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

AFF

Version 18.05.2020

2. INSTALLATION ET FONCTIONNEMENT


2.1 DESCRIPTION

Le module AFF se présente sous la forme d'un boîtier à encastrer dans une cloison murale. Il comporte sur sa face avant un écran tactile de 4.3' et deux prises de pression modulables.

Sur sa face arrière, on retrouve deux autres prises de pressions (couplées aux prises de la face avant) ainsi que trois borniers à vis permettant tous les raccordements électrique.

FACE ARRIÈRE

SES AUTOMATION

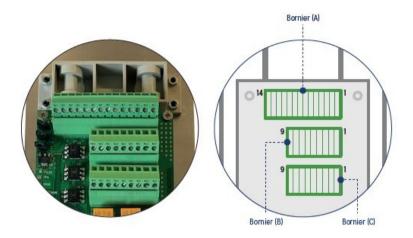
4, Rue Faraday
Technopôle Forbach Sud

57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03.87.88

Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86 Mail: contact@ses-automation.fr

AFF

Version


18.05.2020

Page 4/33

2.2 RACCORDEMENTS ÉLECTRIQUES

Les raccordements électriques de l'AFF s'effectuent sur sa face arrière par le biais de trois borniers au pas de 3,81mm

2.2.1 BORNIER A

Le premier bornier 14 points permet de connecter :

- L'alimentation +24V DC
- Les trois sortes analogiques 0-10V isolées
- Les deux entrées contact sec
- Les deux signaux de liaison série asynchrone du Modbus

>> Les signaux disponibles sur le bornier A sont les suivants :

Pin 1	Entrée alimentation +24V continu
Pin 2	Masse du système
Pin 3	Sortie analogique 0-10 V numéro 1
Pin 4	Masse isolée des sorties analogiques
Pin 5	Sortie analogique 0-10 V numéro 2
Pin 6	Masse isolée des sorties analogiques
Pin 7	Sortie analogique 0-10 V numéro 3
Pin 8	Masse isolée des sorties analogiques
Pin 9	Entrée contact sec numéro 1
Pin 10	Masse du système
Pin 11	Entrée contact sec numéro 2
Pin 12	Masse du système
Pin 13	Signal ModBus A
Pin 14	Signal ModBus B

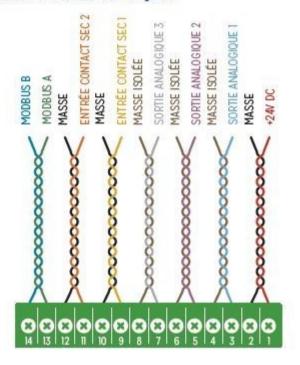
SES AUTOMATION 4, Rue Faraday Technopôle Forbach Sud 57460 BEHREN LES FORBACH Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86

Mail: contact@ses-automation.fr

Version

AFF

18.05.2020


Page 5/33

[Tableau 2 Description des signaux disponibles sur le connecteur A]

[Note : Attention, la masse des sorties isolées n'est pas connectée à la masse du système !]

>> Le schéma de raccordement du bornier A est décrit sur la figure 4.

- Figure 4 Connecteur A -

[Note : Pour les modèles UNIT et UNIT+, la sortie analogique 3 est réservée à la gestion du réglage en température en salle d'opération.]

2.2.2 Bornier B

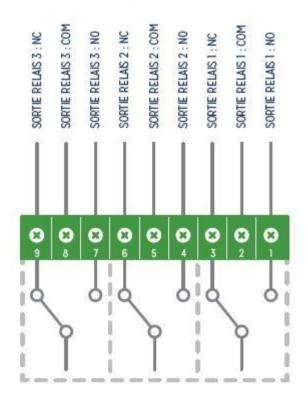
Le troisième bornier 9 points permet de connecter jusqu'à 6 capteur externes,

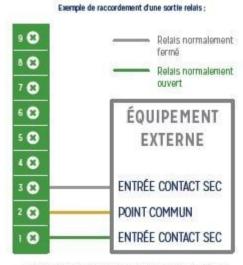
>> Les signaux disponibles sur le connecteur B sont les suivants :

Pin 1	Entrée analogique en tension pour capteur externe UI (0/10V ou 5/10V)
Pin 2	Masse du système
Pin 3	Entrée analogique en courant pour capteur externe I1 (4/20mA ou 0/20mA)
Pin 4	Entrée analogique en tension pour capteur externe U2 (0/10V ou 5/10V)
Pin 5	Masse du système
Pin 6	Entrée analogique en courant pour capteur externe l2 (4/20mA ou 0/20mA)
Pin 7	Entrée analogique en tension pour capteur externe U3 (0/10V ou 5/10V)
Pin 8	Masse du système
Pin 9	Entrée analogique en courant pour capteur externe 13 (4/20mA ou 0/20mA)

[Tableau 4 Description des signaux disponibles sur le bornier B]

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr


AFF


Version 18.05.2020

Page 6/33

>> Le schéma de raccordement du bornier B est décrit sur la figure 5. Un exemple est décrit sur la figure 6.

- Figure 6 Exemple de raccordement d'une sortie relais -

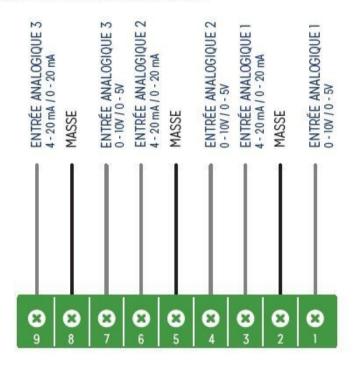
[Note : Pour les modèles UNIT et UNIT+, la sortie relais 3 est réservée à la gestion du relais dédié.]

[Note : Pour chaque relais, les connexions NC et NO sont disponibles et permettent donc toutes les configurations.]

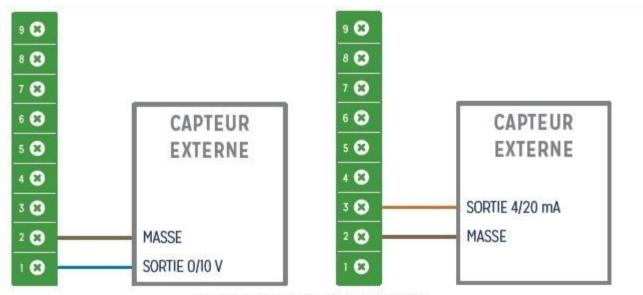
2.2.3 BORNIER C

Le second bornier à 9 points permet de connecter 3 sortes relais.

>> Les signaux disponibles sur le connecteur B sont les sulvants :


Pin 1	Sortie relais 1 : connexion NO (normalement ouvert)
Pin 2	Sortie relais 1 : connexion COM (commun)
Pin 3	Sortie relais 1 : connexion NC (normalement fermé)
Pin 4	Sortie relais 2 : connexion NO (normalement ouvert)
Pin 5	Sortie relais 2 : connexion COM (commun)
Pin 6	Sortie relais 2 : connexion NC (normalement fermé)
Pin 7	Sortie relais 3 : connexion NO (normalement ouvert)
Pin 8	Sortie relais 3 : connexion COM (commun)
Pin 9	Sortie relais 3 : connexion NC (normalement fermé)

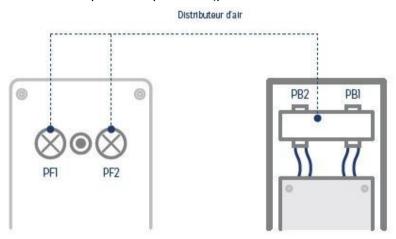
[Tableau 3 Description des signaux disponibles sur le bornier B]



>> Le schéma de raccordement du bornier B est décrit sur la figure 7.

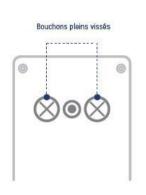
Exemple de raccordement d'un Capteur externe avec sorte en tension :

Exemple de raccordement d'un capteur externe avec sorte en courant :


- Figure 8 Exemple de connections avec des capteurs externes -

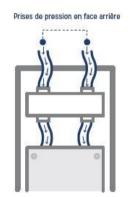
2.3 RACCORDEMENT PNEUMATIQUES

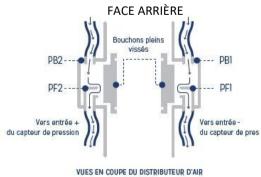
L'AFF possède en face avant un distributeur d'air (Figure 9) permettant par un jeu de bouchons fournis, de configurer les emplacements des prises de pression (pour une mesure différentielle).


FACE AVANT

FACE ARRIÈRE

Ce distributeur a l'avantage d'isoler les arrivées de pression arrière et de permettre l'accès au capteur de pression directement sur la face avant du produit, permettant de multiples configurations


Par exemple, ce système permet, sans aucun démontage de raccorder les entrées du capteur de pression à un banc d'étalonnage.


>> Exemple de configuration 1 : Prises de pression en face arrière.

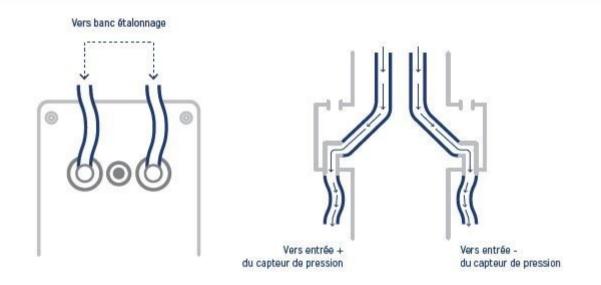
FACE AVANT

Les deux arrivées différentielles de pression sont connectées sur les deux entrées PB1 et PB2 du distributeur en face arrière. Sur la face avant, les deux bouchons pleins (fournis) sont vissés sur les entrées PF1 et PF2 du distributeur.

(PRINCIPE)

- Figure 10 Prises de pression en face arrière

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr


AFF

Version 18.05.2

Page 9/33

Exemple de configuration 3 : Connexion à un banc d'étalonnage.

Les deux bouchons pleins des entrées PF1 et PF2 du distributeur sont à enlever. Les arrivées de pression du banc d'étalonnage sont à raccorder sur ces mêmes entrées PF1 et PF2.

Les entrées PB1 et PB2 du distributeur sont en l'air et n'ont pas donc d'incidence sur la mesure.

2.4 ÉCRAN TACTILE

L'AFF dispose en face avant d'un écran tactile de 4,3' (11cm) qui permet à l'utilisateur de visualiser facilement et à grande distance les mesures issues des différents capteurs connectés au système. Il permet également d'agir sur certaines valeurs, comme les consignes de régulation (pour les versions qui le permettent), les offsets de calibration des capteurs internets ou l'indentant Modbus.

Pour les versions UNIT et UNIT +, dédiées aux salles opératoires, il permet également au personnel médical d'agir sur la température de la pièce ou sur un relais.

2.4.1 PAGE PRINCIPALE

Jusqu'à trois valeurs, correspondant aux mesures des différents capteurs connectés à l'AFF, peuvent être affichées simultanément. Par le biais de l'interface de programmation fournie avec le matériel, l'utilisateur peut :

□ Choisir les valeurs à afficher sur l'écran

- Sur les Modèles SENS, PID et UNIT, les différentes valeurs à afficher peuvent être sélectionnées parmi :
 - Pression différentielle (capteur embarqué sur l'AFF)
 - Mesure issue du capteur externe U1
 - Mesure issue du capteur externe U2
 - Mesure issue du capteur externe U3
 - Mesure issue du capteur externe II
 - Mesure issue du capteur externe 12
 - Mesure issue du capteur externe 13
 - État de l'entrée contact sec 1
 - État de l'entrée contact sec 2

Sur les modèles SENS+ , PID+ et UNIT+, les deux autres capteurs embarqués permettent de sélectionner également les mesures suivantes :

- Hygrométrie ambiante
- Température ambiante

Si l'utilisateur a décidé d'afficher plus de trois mesures dans l'interface de configuration, celles-ci défilent sur l'écran avec une période d'environ deux secondes.

□ Changer les couleurs d'affichage de chacune des mesures affichées.


Cet affichage simultané de plusieurs mesures à de nombreux avantages :

- Il permet à l'utilisateur de visualiser en un coup d'œil une mesure « Hors-norme»

En effet, pour chacune des mesures affichées et par le biais de l'interface de programmations, l'utilisateur peut choisir deux seuils d'alarme : un seuil haut et un seuil bas. Si la mesure devient supérieure au seuil d'alarme haut ou inférieure au seuil d'alarme bas , la mesure s'affiche alors en rouge sur l'écran.

- Il permet à l'utilisateur de désactiver le buzzer lorsqu'une alarme a été déclenchée.

Si une alarme est déclenchée et que le buzzer est activé pour cette alarme, l'utilisateur a la possibilité de celui-ci en appuyant simplement sur l'une des trois mesures affichée à l'écran. La mesure en alarme reste affichée en rouge mais le buzzer ne retenti plus.

- Figure 5 LCD - Page principale -

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

2.4.1.1 SPECIFICITES DES MODÈLES UNIT ET UNIT+

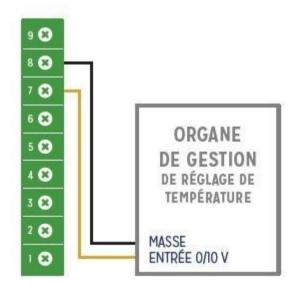
Les modèles UNIT et UNIT+ sont des modèles destinées à être utilisé en milieu médical, dans les salles d'opérations En plus des fonctions avancées de l'AFF, le personnel médical a besoin d'avoir accès à des commandes de réglage de température de la salle ainsi qu'à une commande de relais.

Ces fonctions spéciales sont gérées de la manière suivante par l'AFF UNIT ET UNIT+:

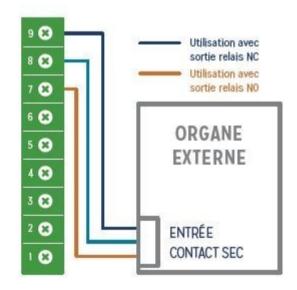
- La sorte analogique 0-10V numéro 3 est réservée à la gestion du réglage de la température de la salle d'opération

Le personnel doit pouvoir faire varier la température de consigne de la climatisation de ± 5°C par pas de 0,5°C, ce qui correspond à 20 paliers. Chaque palier correspond donc à une transitons de 0,5V sur la sorte analogique 3.

Le tableau 5 donne la correspondante entre décalage et température et valeur de la sorte analogique 3.


La figure XX décrit comment connecter la sorte analogique 3 au matériel de gestion de température de la salle d'opération

La sorte contact sec numéro 3 est réservée à la gestion d'un relais.


La figure XX décrit comment connecter la sorte contact sec 3 à la commande du relais.

Décalage en température	Valeur de la sortie analogique 3
+5.0°C	10.0V
+4.5°C	9.5V
+4.0°C	9.0V
+3.5°C	8.5V
+3.0°C	8.0V
+2.5°C	7.5V
+2.0°C	7.0V
+1.5°C	6.5V
+1.0°C	6.0V
+0.5°C	5.5V
O°C	5.0V
-0.5°C	4.5V
-1.0°C	4.0V
-1.5°C	3.5V
-2.0°C	3.0V
-2.5℃	2.5V
-3.0°C	2.0V
-3.5°C	1.5V
-4.0°C	1.0V
-4.5℃	0.5V
-5.0°C	0.0V

Lableau 5 Correspondance entre décalage en température et valeur de la sortie analogique 3]

CONNECTEUR (B)

SES AUTOMATION

4, Rue Faraday Technopôle Forbach Sud **57460 BEHREN LES FORBACH**

Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86

Mail: contact@ses-automation.fr

AFF

Version

18.05.2020

Page 12/33

La page principale de ces modèles comporte donc trois boutons supplémentaires (Figure6) disposés en bas de l'écran.

Les boutons sont disposés en bas de l'écran :

- deux boutons « + » et « - »

Ces boutons permettent au personnel médical d'agir sur la température de la salle d'opération par incrément de 0,5°C.

- Un bouton ON/OFF

Ce bouton permet de commander le relais de sorte dédié. Le bouton est VERT lorsque le relais n'est pas activé et ROUGE lorsque le relais est activé

2.4.2 Page d'affichage des consignes de régulation et de mise en veille du LCD.

Un appui prolongé sur une des trois valeurs affichées sur l'écran principal permet de faire apparaître la page d'affichage des consignes de régulations PID (Figure7)

L'utilisateur peut ici modifier les valeurs des consignes de régulation PID en appuyant sur le bouton de modification correspondant. L'écran décrit sur la figure 8 apparaît alors une nouvelle valeur peut être renseignée.


Trois boutons sont également disponibles :

- Un bouton « Enter sleep mode » L'utilisateur peut éteindre l'écran LCD en appuyant sur le bouton de mise en veille (Figure 7). Dans ce mode, seul l'écran LCD se met en veille et toutes les autres fonctionnalités de l'AFF restent opérationnelles Ce mode permet d'augmenter la durée de vie de l'écran lorsque celui-ci n'est pas utilisé.

Un appui n'importe où sur l'écran éteint permet de sortir du mode veille.

- Deux boutons « Advanced settings 1 » et «

Advanced setting 2 »
Ces boutons permettent d'accéder aux deux pages de configurations avancées. Ces pages sont décrites dans les sections suivantes.

- Figure 6 Page principale, modèle UNIT et UNIT+-

- Figure 7 Page d'affichage des consignes de régulation -

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

AFF

Version 18.05.2020

Page 13/33

2.4.3 PAGES DE MODIFICATION DES PARAMÈTRES AVANCES

L'accès à ces pages est protégé par un mot de passe. L'appui sur un des boutons Advanced setting 1 ou Advanced setting 2 fait apparaître la page d'interrogation du mot de passe (Figure 9).

Si le mot de passe rentré est correct, la page de modification des paramètres avancés concernée apparaît.

2.4.3.1 PAGE DE MODIFICATION DES PARAMÈTRES AVANCES 1

La page de configuration est décrite sur la Figure 10.

Quatre paramètres sont ici modifiables :

- MODBUS ID.

Il s'agit de l'identifiant Modbus de l'AFF. Il doit être compris entre 1 et 247.

- P. OFFSET (Pa)

Il s'agit d'un offset de calibration pour le capteur de pression embarqué.

La valeur de cet offset sera rajoutée à la valeur renvoyée par le capteur.

- H. OFFSET (%)

Il s'agit d'un offset de calibration pour le capteur d'hygrométrie embarqué. La valeur de cet offset sera rajoutée à la valeur renvoyée par le capteur, disponible uniquement pour les version SENSOR+, PID+ et UNIT+

- T. OFFSET (%)

Il s'agit d'un ossfet de calibration pour le capteur de température embarqué. La valeur de cet offset sera rajoutée à la valeur renvoyée par le capteur. Disponible uniquement pour les versions SENSOR+, PID+ et UNIT+

2.4.3.2 PAGE DE MODIFICATION DES PARAMÈTRES AVANCES 2

La page de configuration est décrite sur la Figure 11. *Deux paramètres sont ici modifiables* :

- Password change

L'utilisateur peut ici changer le mot de passe d'accès aux pages de paramètres avancés.

- Modbus speed

L'utilisateur peut ici changer la vitesse de communication de Modbus.

Les vitesses possible sont 9600 bauds, 19200 bauds et 57600 bauds (Figure 12)

 Figure 8 Page de modification d'une valeur de consigne de régulation -

 Figure 9 Accès à la page de modification des paramètres avancés -

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

AFF

Version 18.05.2020

Page 14/33

3. INTERFACE MODBUS

Tous les appareils de la gamme AFF sont capables de communiquer via un bis de terrain Modbus RTU utilisant une interface série-T+RS485.

3.1 CONFIGURATION ET CÂBLAGE DU BUS DE COMMUNICATION

- La norme RS485 est une norme qui définit les caractéristiques électriques de la couche physique d'une interface numérique sérielle. La transmission se fait une ligne électrique, en pratique une paire torsadée, par des variations de tension en mode différentiel Tous les module (AFF, automate, etc..) sont branchés en parallèle.
- Tous les AFF sont des modules esclaves. Ils peuvent ainsi être interrogés ou configurés à distance par un module maître (automate ou logiciel de supervision via un PC connecté sur le réseau Modbus).

Important : Chacun des AFF présents sur le même bus doit avoir un identifiant différent

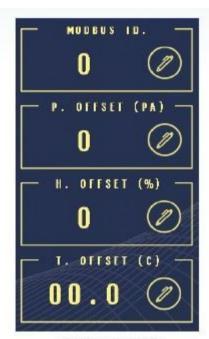


 Figure 10 Page de modification des paramètres avancés 1 -

 Figure 11 Page de modification des paramètres avancés 2 -

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86

Mail: contact@ses-automation.fr

AFF

Version

18.05.2020

Page 15/33

Trois cavalier CVI, CV2 et CV3 permettent d'adapter l'impédance de ligne du bus suivant la positon de chaque AFF (Figue XXX) sur celui-ci:

- Les cavaliers CV1 et CV2 contrôlent les résistances de tirage des lignes Modbus A et B
- Normalement le tirage de ligne doit être effectué par le module maître présent sur le bus. Néanmoins, il est possible d'effectuer cette opération sur l'un des AFF présent, sur le bus en montant les cavaliers CV1 et CV2 (tirage respect des bus A et B).
 - Le cavalier CV3 contrôle la résistance de terminaison du bus.
 - Ce cavalier doit uniquement être monté sur les AFF situés en début et en fin de bus.

Le câble utilisé pour le bus doit être constitué d'au moins une paire torsadée (section . 0,5 mm²) blindé avec tresse. Au besoin, la tresse peut être connectée à la masse système sur le premier module du bus. La capacité caractéristique du câble doit être inférieure à 100pFgm et sa résistance caractéristique inférieure à 1200 à 100 kHz.

Le bus ne doit pas effectuer de boucle (i.e l'appareil en bout de ligne ne doit pas être raccordé à l'appareil en début de ligne

Tous les modules présents sur le bus doivent utiliser la même vitesse de communication et utiliser les mêmes paramètres d'interface (nombre de bits de stop, parité, etc..)

3.2 CONFIGURATION DE LA LIAISON SERIE

Tous les appareils AFF ont une configuration Modbus figée, à l'exception de la vitesse de transmissions. Ces paramètres sont résumés dans le tableau.

Vitesse de transmission	9600 à 115200 bauds
Données	8 bits
Bit de stop	1
Parité	Aucune
Contrôle de flux	Aucun

4. Rue Faraday

3.3 ACCÈS AUX REGISTRES

L'automate maître présent sur le bus peut interroger chaque AFF présent et récupérer deux types de valeurs :

- Des valeurs binaires (Discrete inputs) Il s'agit d'informations de type booléennes.

Exemples:

Relais de sorte 3 activé : Registre 20045 = 1
 Entrée contact sec 1 non activée : Registre 20043 = 0

- Des valeurs numériques (Input registres) Il s'agit des valeurs des mesures effectuées par les capteurs. I'équation permettant de passer la valeur lue dans le registre à la valeur réelle est la suivante :

Valeur de la mesure = valeur lue dans le registre g10

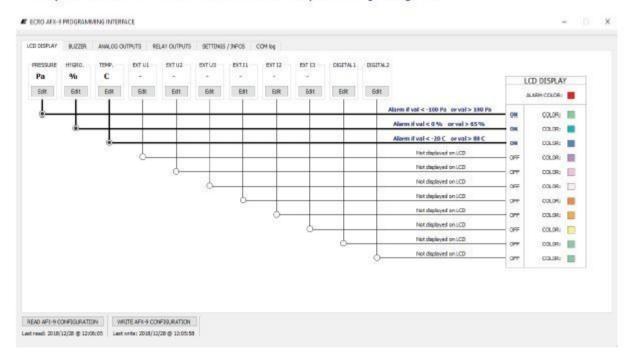
Exemples:

- Si la valeur lue dans le registre 40001 (mesure du capteur de pression) est OxFFDD = -350, alors la valeur de la mesure est -35 Pa.
- Si la valeur lue dans le registre 40003 (mesure du capteur de température) est 0x00E2 = 226, alors la valeur de la mesure est 22.6°C.

Registre	Description	Type de donnée	Gamme de valeurs
20010	Capteur interne Pression : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20011	Capteur interne Hygrométrie : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20012	Capteur interne Température : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20013	Capteur Externe U1 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20014	Capteur Externe U2 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20015	Capteur Externe U3 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20016	Capteur Externe II : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20017	Capteur Externe I2 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20018	Capteur Externe I3 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20019	Entrée contact sec 1 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20020	Entrée contact sec 2 : alarme visuelle active ?	0 = NON, 1 = OUI	0 ou 1
20021	Capteur interne Pression : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20022	Capteur interne Hygrométrie : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1

20023	Capteur interne Température : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20024	Capteur Externe U1 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20025	Capteur Externe U2 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20026	Capteur Externe U3: alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20027	Capteur Externe II : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20028	Capteur Externe I2 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20029	Capteur Externe I3 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20030	Entrée contact sec 1 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20031	Entrée contact sec 2 : alarme buzzer active ?	0 = NON, 1 = OUI	0 ou 1
20032	Capteur Interne Pression : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20033	Capteur interne Hygrométrie : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20034	Capteur interne Température : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20035	Capteur Externe U1 : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20036	Capteur Externe U2: alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20037	Capteur Externe U3: alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20038	Capteur Externe II : alarme relais active ?	O = NON, 1 = OUI	0 ou 1
20039	Capteur Externe I2 : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20040	Capteur Externe 13 : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20041	Entrée contact sec 1 : alarme relais active ?	0 = NON, 1 = OUI	0 ou 1
20042	Entrée contact sec 2 : alarme relais active ?	O = NON, 1 = OUI	0 ou 1
20043	Entrée contact sec 1 : valeur	0 = INACTIVE, 1 = ACTIVE	0 ou 1
20044	Entrée contact sec 2 : valeur	0 = INACTIVE, 1 = ACTIVE	0 ou 1
20045	Sortie relais 1 : valeur	0 = RELAIS INACTIF. 1 = RELAIS ACTIF	0 ou 1
20046	Sortie relais 2 : valeur	0 = RELAIS INACTIF, 1 = RELAIS ACTIF	0 ou 1
20047	Sortie relais 3 : valeur	0 = RELAIS INACTIF, 1 = RELAIS ACTIF	0 ou 1
	E		

SES AUTOMATION 4, Rue Faraday Technopôle Forbach Sud **57460 BEHREN LES FORBACH** Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86


Registre	Description	Type de donnée
40001	Valeur de la mesure du capteur interne de pression	Entier signé 16 bits
40002	Valeur de la mesure du capteur interne d'hygrométrie	Entier signé 16 bits
40003	Valeur de la mesure du capteur interne de température	Entier signé 16 bits
40004	Valeur de la mesure du capteur externe U1	Entier signé 16 bits
40005	Valeur de la mesure du capteur externe U2	Entier signé 16 bits
40006	Valeur de la mesure du capteur externe U3	Entier signé 16 bits
40007	Valeur de la mesure du capteur externe II	Entier signé 16 bits
40008	Valeur de la mesure du capteur externe l2	Entier signé 16 bits
40009	Valeur de la mesure du capteur externe 13	Entier signé 16 bits

4. LOGICIEL DE CONFIGURATION

4.1 DESCRIPTION GÉNÉRALE

Le logiciel de configuration est fourni avec toutes les versions du matériel. Il permet de configurer À distance (via le bus Modbus) les fonctions de chaque AFF présent sur le bus Modbus.

Il se présente sous la forme d'une interface constituée de plusieurs onglets (Figure 13).

Lorsque l'interface est connectée à un AFF via Modbus, l'utilisateur peut :

- Lire la configuration courante du module en appuyant sur le bouton READ AFF configuration
- Modifier la configuration du module en fonction de ses besoins.
- Écrire la configuration dans le module en utilisant le bouton WRITE AFF configuration

SES AUTOMATION

4, Rue Faraday

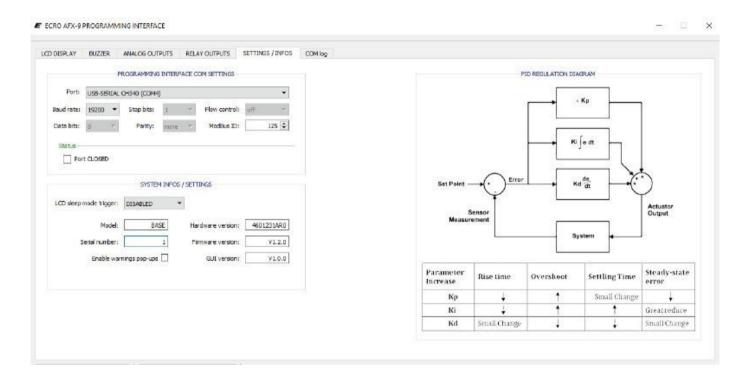
Technopôle Forbach Sud

57460 BEHREN LES FORBACH

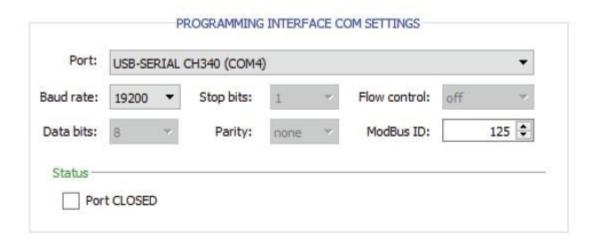
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86

Mail: contact@ses-automation.fr

AFF


Version 18.05.2020

Page 19/33



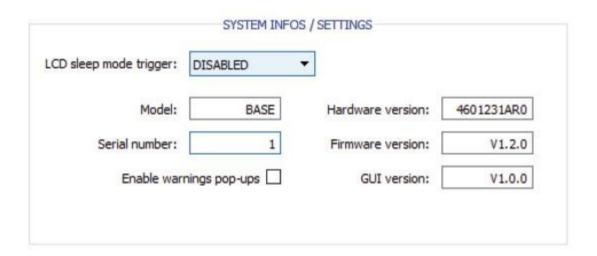
4.2 ONGLET « SETTING/INFO »

Avant de pouvoir communiquer avec un AFF, l'utilisateur doit d'abord configurer le port de communication de programmation Ces réglages se trouvent dans l'ongle « SETTING/INFO ».

4.2.1 PARAMÈTRES DE L'INTERFACE DE PROGRAMMATION

Version

Le PC sur lequel l'interface de programmation est exécutée doit être connectée sur le réseau Modbus via l'adaptateur Modbus/USB fourni avec l'AFF. Pour le PC, l'adaptateur est interprété comme un port COM classique. C'est ce port COM qui doit être sélectionné dans l'interface.


Seul la vitesse du port de communication peut être modifiée par l'utilisateur

Elle doit correspondre à celle programmée dans l'AFF. (§2.4.3.2) Pour adresser le AFF sur le réseau Modbus, l'utilisateur doit également renseigner son identifiant Modbus.

Une fois tous ces paramètres correctement renseignés, l'utilisateur peut lire la configuration courante de l'AFF concerné en appuyant sur le bouton READ AFF CONFIGURATION.

SES AUTOMATION

4, Rue Faraday

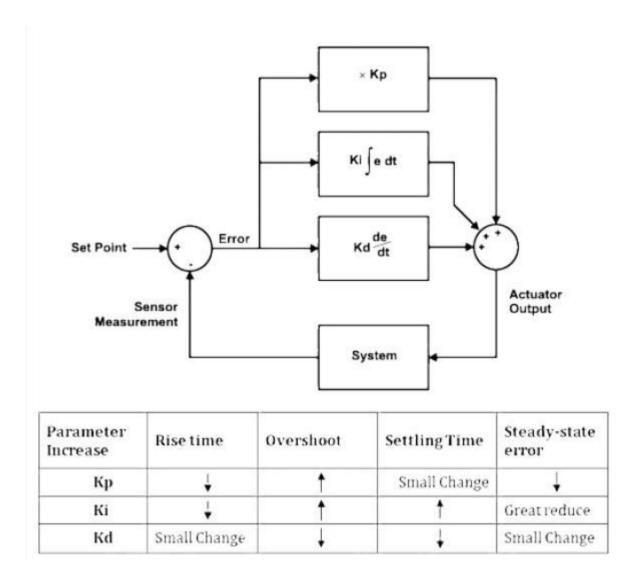
Technopôle Forbach Sud

57460 BEHREN LES FORBACH

Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86

Mail: contact@ses-automation.fr

L'utilisateur trouvera ici plusieurs informations concernant le système. Ces informations sont mises à jours lors de la première lecture de configuration de l'AFF.

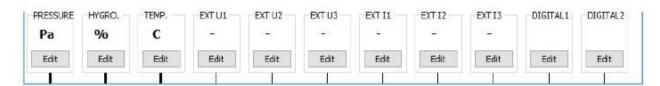

- Modèle
- Modèle de l'AFF : SENSOR, PID ou UNIT
- Numéro de série
- Numéro de série unique de l'AFF
- Version du matériel
- Version de la carte électronique de l'AFF
- Firmware version
- Version du logiciel embarqué dans la carte électronique de l'AFF
- GUI version
- Version de l'interface de programmation de l'AFF
- Déclenchement du mode veille LCD
- La mise en veille de l'écran LCD peut être commandée par une des entrées contact sec de l'AFF. Par exemple, si l'utilisateur sélectionne DIGITAL INPUT 1, l'écran LCD se mettra en veuille si cette entrée est forcée à 0 (contact sec fermé).

Note: lorsque le LCD est en veille, toutes les autres fonctionnalités de l'AFF restent actives (alarme, sortes analogiques, etc..)

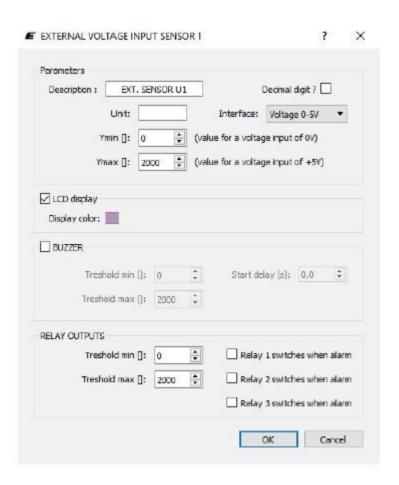
- Activation des avertissements pop-ups
- Lorsque cette option est activée, l'interface de communication demandera confirmation à l'utilisateur lorsqu'il voudra envoyer une nouvelle configuration a l'AFF

4.2.3 DIAGRAMME DE RÉGULATION PID

L'utilisateur trouvera également dans cet onglet un diagramme de rappel du principe de fonctionnement de la régulation PID (utile pour les versions PID, PID+, UNIT et UNIT+). Sont aussi rappelées l'influence de la modification des coefficients Kp. Ki et Kp sur le comportement de la régulation.


SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

4.3 CONFIGURATION DES CAPTEURS


Chaque capteur connecté à l'AFF peut être configuré par l'utilisateur. Il faut pour cela utiliser le bouton Edit du capteur correspondant.

Ces boutons Edit sont disponibles dans les onglets LCD display, Buzzer, Analog outputs et Relay outputs.

4.3.2 CAPTEURS EMBARQUES

Les paramètres éditables des capteurs embarqués (pression pour toutes les versions, hygrométrie et température pour les versions < + >) sont décrits :

Description

- Il s'agit de la chaîne de caractères décrivant le capteur qui sera affichée sur l'écran LCD. La taille maximale de la chaîne est de 16 caractères.

• Unit

- Il s'agit de la chaîne de caractère décrivant l'unité du capteur. La taille maximale de la chaîne est de 4 caractères.

Interface

- L'utilisateur peut sélectionner ici le type de sorte en tension du capteur : 0-10V ou 5-10V pour les capteurs en tension 4-20mA ou 0-20mA pour les capteurs en courant.

Ymin et Ymax

Pour un capteur en tension 0-10V, il s'agit des valeurs mesurées par le capteur correspondants respectivement aux valeurs de sorte OV et 10V. Ces valeurs définissent la courbe de réponse du capteur (tension vs mesure). Elles sont généralement indiquées dans la fiche technique du capteur.

Activation LCD display

- Activation du LCD display permet de faire apparaître la mesure du capteur sur l'écran LCD.

Couleur d'affichage

- Il s'agit de la couleur affichage de la mesure sur l'écran LCD. Elle peut être modifiée dans l'onglet LCD Display.

Activation Buzzer

- Il s'agit d'activation de l'alarme sonore si la valeur mesurée par le capteur sort d'une plage définie par l'utilisateur

• Seuil min et max pour l'alarme Buzzer

- Lorsque l'alarme sonore est activée pour le capteur, l'utilisateur peut entrer ici les valeurs des seuils min et max de la plage de mesure normale. Si la mesure du capteur est supérieure au seuil max ou inférieure au seuil min, l'alarme sonore retenti On retrouve ces réglages dans l'onglet Buzzer.

Retard de démarrage

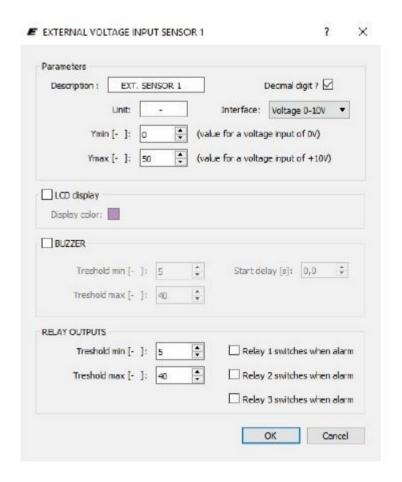
- Il s'agit de délai au terme duquel le buzzer se déclenche lorsqu'une condition d'alarme Buzzer est atteinte Utile par exemple si l'on ne veut pas que le buzzer retentisse lors d'alarmes fugaces.

• Seuil min et max pour l'activation des sortes relais

- L'utilisateur renseigne ici les valeurs des seuils min et max qui permettront de définir le comportement des relais de sorte en fonction des mesures renvoyées par le capteur. Si la mesure du capteur est supérieure au seuil max ou inférieure au seuil min, les relais associés à ce capteur commutent.

• Relais x commute en cas d'alarme

- L'utilisateur sélectionne ici les relais qui doivent commuter si la mesure renvoyée par le capteur est en dehors de la plage de fonctionnement normale définie ci-dessous. On retrouve ces réglages dans l'onglet Relay outputs


SES AUTOMATION 4, Rue Faraday Technopôle Forbach Sud **57460 BEHREN LES FORBACH** Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86 Mail: contact@ses-automation.fr

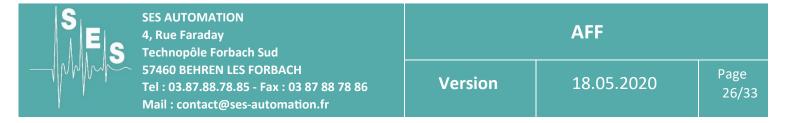
4.3.2 CAPTEURS EXTERNES

Il est possible de connecter jusqu'à six capteurs externes sur l'AFF. Pour éditer les paramètres de ces capteurs, il suffit d'appuyer sur le bouton Edit correspondant au capteur Ext. U1, Ext. U2, ou Ext. U3 pour les capteurs avec sorte en tension et Ext. I1, Ext. I2 ou Ext. I3 pour les capteurs avec sorte en courant.

Pour chacun des capteurs externes, il est possible de modifier

Description

Il s'agit de la chaîne de caractère décrivant le capteur qui sera affichée sur l'écran LCD. La taille maximale de la chaîne est de 16 caractères.


Chiffre décimal

Cette option doit être activée si la valeur mesurée par le capteur est une valeur décimale (avec 1digit)

Exemple: un capteur de température qui peut mesurer une valeur de 25,4°C

Unit

Il s'agit de la chaîne de caractère décrivant l'unité du capteur. La taille maximale de la chaîne est de 4 caractères

Interface

L'utilisateur peut sélectionner ici le type de sorte en tension du capteur : 0-10V ou 5-10V pour les

Ymin et Ymax

Pour un capteur en tension 0-10V, il s'agit des valeurs mesurées par le capteur correspondants respectivement aux valeurs de sorte 0V et 10V. Ces valeurs définissent la courbe de réponse du capteur (tension vs mesure). Elles sont généralement indiquées dans la fiche technique du capteur.

• Activation LCD Display

L'activation de LCD display permet de faire apparaître la mesure du capteur sur l'écran LCD.

Display color

Il s'agit de la couleur affichage de la mesure sur l'écran LDC. Elle peut être modifiée dans l'onglet LCD Display.

Activation Buzzer

Il s'agit de l'activation de l'alarme sonore si la valeur mesurée par le capteur sort d'une plage dénie par l'utilisateur

• Seuil min et max pour l'alarme Buzzer

Lorsque l'alarme sonore est activée pour le capteur, l'utilisateur peut entrer ici les valeurs des seuils min et max de la plage de mesure normale. Si la mesure du capteur est supérieure au seuil max ou inférieure au seuil min, l'alarme sonore retenti On retrouve ces réglages dans l'onglet Buzzer.

Retard de démarrage

Il s'agit du délai au terme duquel le buzzer se déclenche lorsqu'une condition d'alarme Buzzer est atteinte Utile par exemple si l'on ne veut pas que le buzzer retentisse lors d'alarmes fugaces.

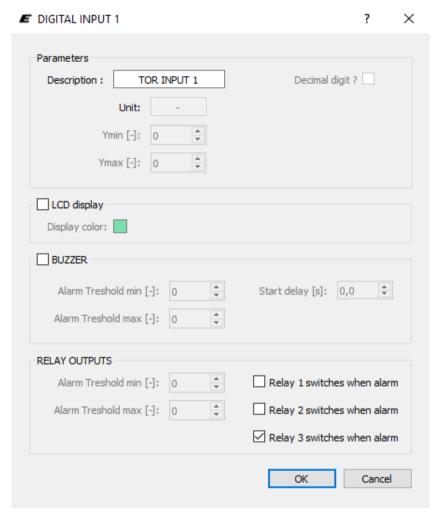
• Seuil min et max pour l'activation des sortes relais

L'utilisateur renseigne ici les valeurs des seuils min et max qui permettront de définir le comportement des relais de sorte en fonction des mesures renvoyées par le capteur. Si la mesure du capteur est supérieure au seuil max ou inférieure au seuil min, les relais associés à ce capteur commutent.

Relay x switcies wien alarm

L'utilisateur sélectionne ici les relais qui doivent commuter si la mesure renvoyée par le capteur est en dehors de la plage de fonctionnement normale définie ci-dessus. On retrouve ces réglages dans l'onglet Relay outputs

Mail: contact@ses-automation.fr



www.ses-automation.fr

4.3.3 ENTRÉES CONTACT SEC

Deux entrées contact sec sont disponibles sur l'AFF. Pour éditer les paramètres de ces entrées, il suffit d'appuyer sur le bouton Edit correspondant aux entrées Digital 1 ou Digital 2.

Pour chacune des entrées contact sec, il est possible de modifier :

• Description

Il s'agit de la chaîne de caractères décrivant l'entrée contact sec qui sera affichée sur l'écran LCD. La taille maximale de la chaîne est de 16 caractères.

Activation LCD Display

L'activation du LCD display permet de faire apparaître la mesure du capteur sur l'écran LCD.

Display color

Il s'agit de la couleur d'affichage de l'état du contact sec sur l'écran LCD. Elle peut être modifiée dans l'onglet LCD Display.

• Activation Buzzer

Il s'agit de l'activation de l'alarme sonore si l'entrée contact sec est court-circuit.

Start delay

Il s'agit du délai au terme duquel le buzzer se déclenche lorsque l'entrée contact sec est court-circuitée. Utile par exemple si l'on ne veut pas que le buzzer retentisse lors d'alarme fugaces.

SES AUTOMATION
4, Rue Faraday
Technopôle Forbach Sud
57460 BEHREN LES FORBACH
Tel: 03.87.88.78.85 - Fax: 03 87 88 78 86
Mail: contact@ses-automation.fr

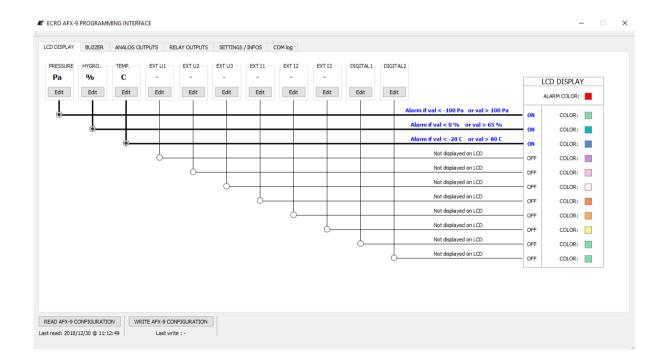
AFF

Version 18.05.2020

Page 28/33

• Relay x switcies wien alarm

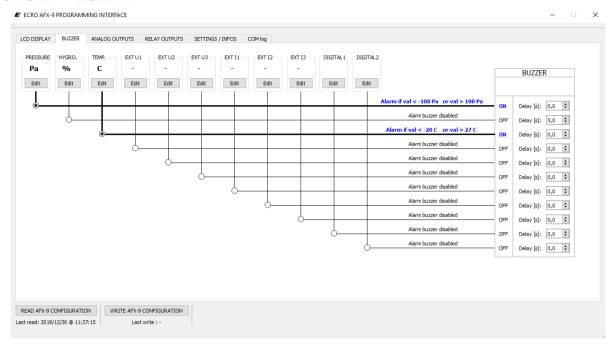
L'utilisateur sélectionne ici les relais qui doivent commuter si l'entrée contact sec est courtcircuit On retrouve ces réglages dans l'onglet Relay outputs.


4.4 ONGLET « LCD DISPLAY »

Le premier onglet de l'interface de programmation se présente sous la forme d'une matrice de connexion permettant de relier ou non les mesures issues de chacun des capteurs à l'écran LCD.

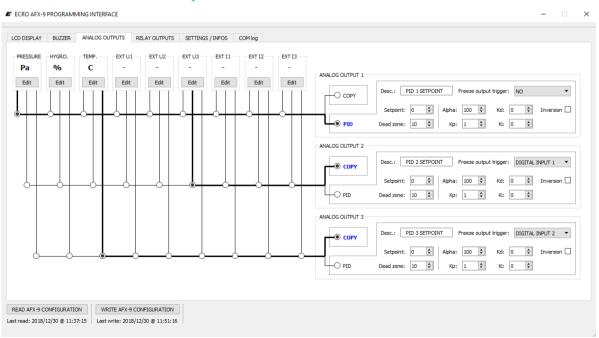
Si la mesure d'un capteur est affichée sur le LCD, le trait de connexion est en gras et la menton ON est indiquées. Le cas échéant, le trait de connexion est fin et la menton OFF est indiquée.

L'utilisateur peut changer la couleur de la mesure affichée sur le LCD en cliquant sur la valeur couleur correspondante dans le cadre LCD Display.


On retrouve également sur cette matrice un rappel des seuils d'alarme buzzergLCD pour chacun des capteurs. Un clic sur l'une de ces valeurs de seuil d'alarme permet d'ouvrir la fenêtre d'édition du capteur correspondant et d'en modifier les valeurs.

Version

4.5 ONGLET « BUZZER »



L'onglet Buzzer est similaire à l'onglet LCD Display. Il permet de connecter chacun des capteurs au buzzer de l'AFF. Si un capteur est connectée au buzzer, l'alarme sonore de l'AFF retenti lorsque la mesure issue du capteur se situe en dehors de la plage de fonctionnement normale définie par l'utilisateur

Le déclenchement de l'alarme sonore peut être décalé en modifiant la valeur retard.

Les valeurs des seuils d'alarme correspondantes sont également affichées sur la matrice de connexion. Un clic sur l'une des valeurs ouvre la fenêtre d'édition du capteur et permets sa modification

4.6 ONGLET « SORTIES ANALOGIQUES »

Mail: contact@ses-automation.fr

L'onglet analogique outputs permet de configurer les trois sortes analogique de l'AFF. Il est encore une fois constitué d'une matrice de connexion permettant de connecter les sortes de chacun des capteurs aux sortes analogiques. Deux types de connexions sont possibles :

COPY

Si l'un des capteurs est connecté à l'entrée COPY de l'une des sortes analogiques, alors les mesures de ce capteur sont directement recopiées sur cette sorte analogique (sorte en tension 0-10V)

• PID (uniquement pour les version PID et UNIT)

Les mesures issues de chacun des capteurs peuvent être utilisées en entrées de chacun des régulateurs PID que possède l'AFF.

Si la régulation PID est sélectionnée, la sorte analogique correspondante devient la sorte du régulateur PID.

Pour chaque régulateur, l'utilisateur peut renseigner les champs suivants :

Description

La chaîne de caractère décrivant la chaîne de régulation

• Point de consigne

La valeur de consigne du régulateur PID

• Zone morte

La zone autour de la valeur de consigne dans laquelle la sorte du régulateur est figée Exemple : Si la valeur de consigne est de 30 Pa et que la zone morte est de 2 Pa, la sorte du régulateur restera constante dès que la valeur mesurée sera comprise entre 28 et 32 Pa.

Alpia

Gain global en sorte de la chaîne de régulation PID.

• Kp, Ki et Kd

Les trois coefficients qui définissent le comportement de la régulation PID (respectivement le gain proportionnel, le gain dérivé).

• Inversion

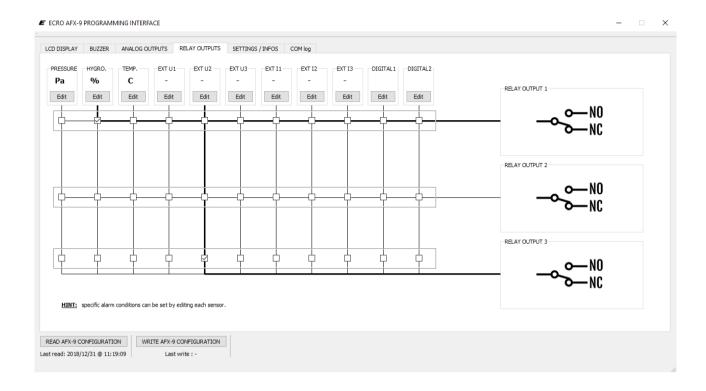
Cette option permet d'inverser le sens de variation de la tension analogique de sorte par rapport au sens de variation de la sorte du régulateur PID.

Avec l'option activée, une augmentation de la sorte du régulateur PID va entraîner une diminution de la tension analogique correspondante, et vice et versa.

• Déclencheur de sortie

Cette fonction spécifique à l'AFF permet de geler la tension de sorte du régulateur PID si l'une des entrées contact sec du module est en court-circuit.

Exemple: la pression d'une pièce est régulée en pression avec l'AFF. L'entrée contact sec associée à l'option déclencheur de sortie est reliée à la porte d'entrée de la pièce. Dans cette configuration, si un opérateur entre dans a pièce, l'entrée contact sec est mise en court-circuit tant que la porte reste ouverte et fige ainsi la sorte du régulateur, empêchant donc l'actionneur de s'emballer.


Lorsque la porte se referme, la pièce redevient hermétique et le régulateur PID redevient act.

Note : sur les versions UNIT et UNIT+, la sorte analogique 3 est réservée à la régulation de température spécifique à ces modèles, elle n'est donc pas disponible dans l'interface de configuration

4.7 ONGLET « RELAIS DE SORTIE »

L'onglet Relay outputs permet de configurer les trois sortes relais de l'AFF.

Il est encore une fois constitué d'une matrice de connexion permettant de connecter les sortes d'alarme de chacun des capteurs aux sortes relais. Pour facilité la visibilité de l'onglet, les conditions d'alarme pour les sortes relais ne sont pas affichées ici, mais on les retrouve dans les optons de chacun des capteurs.

Les conditions d'alarme de plusieurs capteurs peuvent être associées simultanément à la même sorte relais.

Dans ce cas-là, le module effectue un ou logique de ces conditions d'alarme.

5. INFORMATIONS ADDITIONNELLES

5.1 CARACTERISTIQUES TECHNIQUES

CARACTERISTIQ	UES ELECTRIQUES
Alimentation	24 VDC
Consommation	TODO
Gamme de température	-10 à 70°C
EN	TREES
Entrées digitales	0-5V / 20mA TOR
Entrées analogiques en tension	0-10V / 20mA, Ri=94kΩ
Entrées analogiques en courant	0-20mA, R⊨520Ω
\$0	RTIES
Sorties analogiques	0-10V, Ro > 22kΩ
Sorties contact sec	1A/24VDC - 0.5A/230VAC
Buzzer d'alarme affectable	85 dB
COMMU	UNICATION
ModBus RTU	9600 à 57600 bauds
Bits de données	8 bits
Bit d'arrêt	1 bit
Parité	Aucune
Contrôle de flux	Aucun
CAPTEUR DE P	RESSION INTERNE
Plage de mesure	De -150 Pa à +150 Pa
Précision du capteur / résolution	1 Pa
Unité de mesure	Pa
Surpression admissible	7 kPa
Pression d'éclatement	20 kPa
Gamme de température	-10 à 70°C
CAPTEUR DE TEMPERATURE	E ET D'HYGROMETRIE INTERNE
Plage de mesure T/H	-40 à +125°C et 0 à 100%
Précision du capteur T/H	+/- 0.2°C et +/- 2%
Résolution T/H	0.01°C et 0.01 %
CARACTERISTIC	DUES MECANIQUES
Face avant	Aluminium brossé ou PVC multicolore
Polds	TODO
Indice de protection façade	IP55
Contrôle de flux	Aucun

